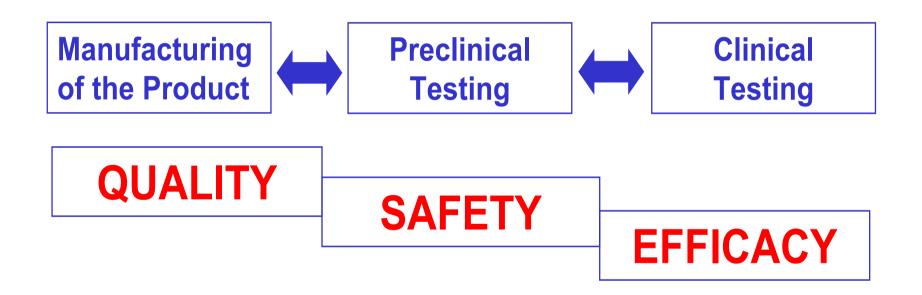

Pharmaceutical Biotechnology 2024

Lecture 14

Chapter 6.1. REGULATORY ISSUES in Pharmaceutical Biotechnology

Dr. Kurt Pfister, PFC Pharmafocus AG

The Development Process –by Decision Points

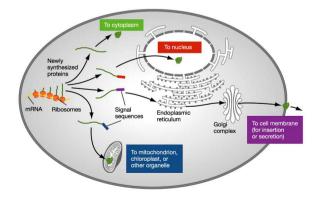

Commerzialization

> Proof of Concept

NME - New Molecular Entity

≻Discovery

The Development Process


Standardized production -

challenge of biotechnologic - derived medicinal products

Synthetic versus biotechnology-derived Medicinal Products – the difference

Difference in complexity

Synthetic versus biotechnology-derived Medicinal Products – the difference

"The process makes the product"

Any change in the production may change the product

Any change in the product may change the efficacy and safety

Product Development

Which Product?

Manufacturing - synthetic versus biotech

Formulation - transport vehicle to the target

Packaging - a tricky challenge

Which product?

Major questions to be asked

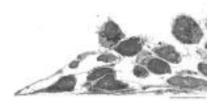
- Which are the potential indication?
- What is the suitable application route?
- Which administration forms are possible with the active principle?

Preclinical Development

What is the purpose of preclinical development? What has to be avoided by all means?

Botulinum toxin (Clostridium botulinum)

Human lethal dose:

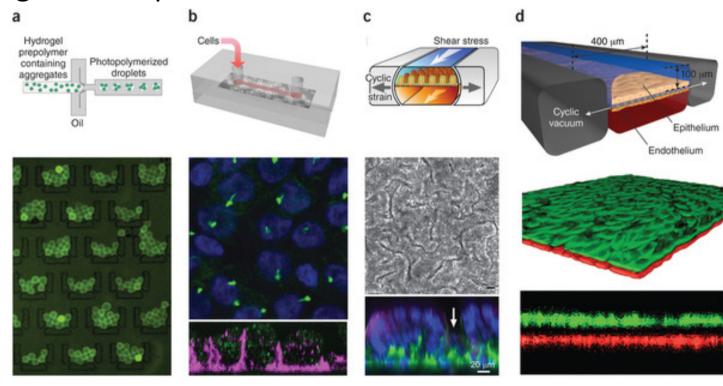

1.3–2.1 ng/kg intravenously or Intramuscularly

(10–13 ng/kg when inhaled).

Curare (plant derived alkaloid):

Human lethal dose, **375 μg kg**⁻¹ (injected)

- In-silico
- In-vitro
- Ex-vivo
- Animal models



Microfluidic organs-on-chips

- For preclinical studies
- Nature Biotechnology 32, 760–772 (2014)

Micro-tissues in hydrogels

- (a) liver-on-a-chip
- (b) kidney-on-a-chip
- (c) gut-on-a-chip
- (d) lung-on-a-chip

Toxicology

- Acute
- Sub-Chronich
- Chronich

Answers from Preclinical Testing

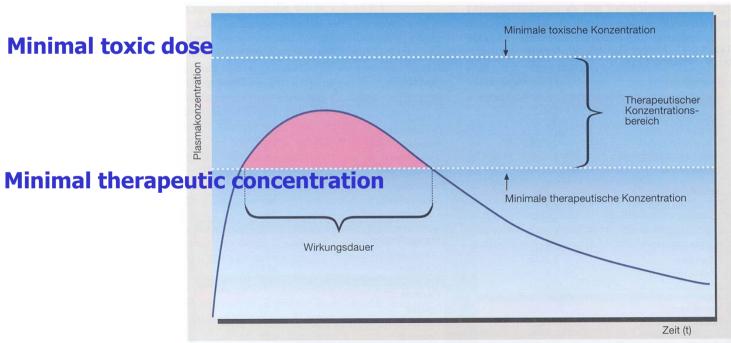
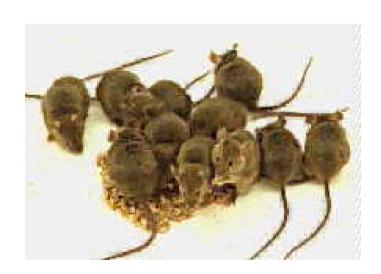



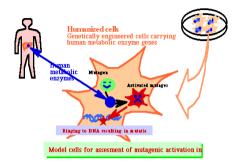
Abb. A 2–18. Ermittlung des therapeutischen Konzentrationsbereichs durch Bestimmung der minimalen therapeutischen und der minimalen toxischen Wirkstoffkonzentration

Reproduction

Teratogenicity

Contergan = Thalidomide Germany: 1961/62

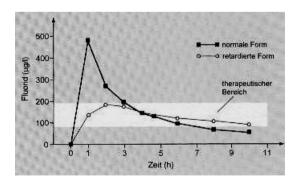
Teratogenicity


A teratogen is an agent that can disturb the development of an embryo or fetus. Teratogens may cause malformation of organs or parts of the body.

Thalidomide

Mutagenicity

Humanized cells for mutagenic assay



17.01.2006

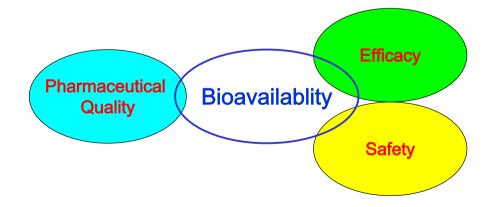
47

Preclinical Development – Cautious approach

Pharmacokinetics

Preclinical studies

 Preclinical trials involve cell culture and animal studies, not studies in human. The main purpose of preclinical trials is to test the <u>biosafety</u> of a product before it is applied for clinical studies.


- Main Parameters, which are tested:
- Toxicity
- Therapeutic range/Pharmacokinetics
- Mutagenicity
- Teratogenicity
- Effects on reproduction, lifetime

Clinical Development

Bioavailability First in man Which dosage / regimen? Design

Bioavalability

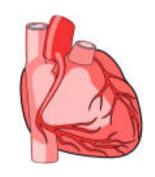
First Steps in Man Phase I

Question 1:

How does the body process a new drug?

- Absoprtion
- Distribution
- Metabolism
- Excretion
 - Kinetic properties
 - Time course of drug concentration
 - Interface between dose and concentration

Bioavailability


Question 2 – Which dose is necessary to reach the target?

First Steps in Man Phase I

Active principle at target?

First Steps in Man Phase I

Question 3

Did the required dose of drug reached the target?

Relationship between concentration at site of action and its effect

Phase I clinical study

- Patients: 20 to 100 <u>healthy</u> volunteers
- Length of Study: Several months
- Purpose: Safety, Pharmacokinetics,
 Pharmacodynamics, Bioavailability, Dosage to reach the target.
- Approximately 70% of drugs move to the next phase

Phase II

Dosage? – Administration scheme?

10 mg?

15 mg?

Before meal?

mornings? once /w ?

evenings?

once /d?

40 mg?

several times /d?

Phase II

Challenge

- Accurate information
- Limited number of patients
- Within short time

Strategic approach dependent on

- Indication
- Efficacy parameters
- Patients

Phase II

Typical number of patients

■ 80 – few 100

Typical study designs

- Parallel
- Comparative (i.e. dose)
- One to few centers
- To select efficacious dose regimen

Phase II

Biomarker

Phase II

Biomarker - Definition

- a physiological response or laboratory measurement that occurs in association with a pathological process and has putative diagnostic and/or prognostic utility.
- it does not necessarily indicate efficacy or toxicity

Phase II clinical trials

- Patients: Up to a few hundred people with the disease/condition
- One to few centers
- Parallel/comparative
- Length of the study: several months to 2 years
- Purpose: Find efficacy dose, side effects
- Approximately 33 % of the drugs move to the next phase

Source FDA

Confirmation of efficacy and safety Phase III

Typical number of patients

■ 500 - x1000

Typical study designs

- Controlled
- Placebo and/or comparative
- Double blind
- Parallel
- Multicenter and multinational
- To prove efficacy, superiority, or equivalency

PFC Pharma Focus Ltd

17.01.2006

75

Confirmation of efficacy and safety Phase III

Challenge

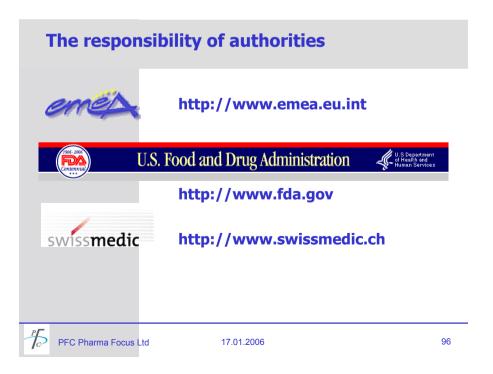
- Standardization of selection of patients
- Standardization of data collection
- Compliance with Good Clinical Practice

Strategic approach dependent on

- Indication
- **Efficacy parameters**
- **Patients**

Challenges in Conducting Clinical Studies

Patients


83

Phase III clinical trial

- Patients 500-3000 volunteers with the disease/condition
- Multicenter/multinational
- Length of the study: 1-4 years
- Placebo/comparative
- Double blind
- Parallel
- Purpose: Efficacy and monitoring of adverse effects

Marketing Authorization

The responsibility of authorities

- Prove of quality
- Prove of efficacy
- Prove of safety